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We propose a new multivariate generalization of univariate concave regression.

Our new method is based on total concavity.

Total concavity is a multivariate extension of univariate concavity, defined via 
max-order mixed (partial) derivative constraints.



Univariate Concave Regression

Data:  where  and (x(1), y1), …, (x(n), yn) x(i) ∈ [0,1] yi ∈ ℝ

Suppose  has diminishing returns with respect to .  

In other words, the rate of change in  decreases as  increases.

y x

y x

̂fconcave ∈ argmin
f:concave

n

∑
i=1

(yi − f(x(i)))2

( = dy/dx)



Example



Multivariate Concave Regression

Data:  where  and (x(1), y1), …, (x(n), yn) x(i) ∈ [0,1]2 yi ∈ ℝ

What are multivariate versions of  ?̂fconcave

For simplicity, we mainly focus on the bivariate case .d = 2

Example: , , and .y = log(Earnings) x1 = Education x2 = Experience



Existing Notions of Multivariate Concavity

 General Concavity 

 Axial (= Coordinate-wise) Concavity 

 Additive Concavity

∘

∘

∘

Total concavity is different from them!



General Concavity
  is (generally) concave if and only if  

 

for all  and .

f

f((1 − α)x + αy) ≥ (1 − α)f(x) + αf(y)

α ∈ [0,1] x, y ∈ [0,1]2

Studied in, for example,  

[Balázs 2016], [Kuosmanen 2008], [Lim & Glynn 2012],  

[Seijo & Sen 2011], [Kur et al 2024], …

Weakness:  

It requires concavity on every line  γ0 + γ1x1 + γ2x2 = 0.



Axial Concavity

  is axially (coordinate-wise) concave if and only if  

  and   are concave for each 

f

f( ⋅ , x2) f(x1, ⋅ ) x1, x2 ∈ [0,1] .

It is often justifiable from domain knowledge or data.



Example



Axial Concavity

Weakness: 

Axial concavity is a weak assumption. 

It may require more data to avoid overfitting than others

Studied in, for example, [Iwanaga et al 2016]



Additive Concavity

Weakness:  

No interaction effects 

Can be restrictive sometimes.

Studied, for example, in  

[Chen & Samworth 2016], [Meyer 2013], [Meyer 2018], [Pya & Wood 2015], …

  is additive concave if and only if  

 for some univariate concave functions  and .

f

f(x1, x2) = f1(x1) + f2(x2) f1 f2



Example Again



Characterization via Mixed (Partial) Derivatives

 Univariate Concavity:  , i.e., .∘ f ′￼′￼ ≤ 0
∂2f
∂x2

1
≤ 0

 General Concavity:  , , and .∘
∂2f
∂x2

1
≤ 0

∂2f
∂x2

2
≤ 0 ( ∂2f

∂x1x2 )2 ≤
∂2f
∂x2

1
⋅

∂2f
∂x2

2

 Axial Concavity:   and .∘
∂2f
∂x2

1
≤ 0

∂2f
∂x2

2
≤ 0

 Additive Concavity:  , , and .∘
∂2f
∂x2

1
≤ 0

∂2f
∂x2

2
≤ 0

∂2f
∂x1x2

= 0

For smooth functions, 



Axial Concavity

General 
Concavity

Additive 
Concavity



Total Concavity

Additive 
Concavity

Total 
Concavity = +

Axially 
Concave 

Interactions

First introduced by Popoviciu in 1934 and recently described in [Gal 2010].

Axially Concave



Representation Theorem for  
Univariate Concave Functions

Suppose   is a concave function with   and 
.

f : [0,1] → ℝ f ′￼(0+) < + ∞
f ′￼(1−) > − ∞

Concave functions are (infinite) linear combinations of basis functions
 with non-positive weights.x ↦ (x − t)+

Then, there exists a unique (Borel) measure  on  and  such that 
for all , 

, 

where 

ν (0,1) a0, a1 ∈ ℝ
x ∈ [0,1]

f(x) = a0 + a1x − ∫(0,1)
(x − t)+ dν(t)

(x − t)+ = max{x − t, 0} .



Additive concave functions can be written as  

 

for some measures  and  on 

f(x1, x2) = a0 + a1x1 + a2x2 − ∫(0,1)
(x1 − t1)+ dν1(t1) − ∫(0,1)

(x2 − t2)+ dν2(t2)

ν1 ν2 (0,1) .

Additive Concave Functions

How can we add interaction terms to these additive concave functions?

Additive 
Concavity

Total 
Concavity = +

Axially 
Concave 

Interactions



How do we introduce interaction terms to linear regression?

Example: 

    y = β1x1 + β2x2 → y = β1x1 + β2x2+β12x1x2

Interactions can be introduced via   

,  ,  ,  and  x1x2 x1(x2 − t2)+ (x1 − t1)+x2 (x1 − t1)+(x2 − t2)+

Axially Concave Interactions



 :  axially concave for all  

 ,  ,  :  axially concave iff 

∘ βx1x2 β ∈ ℝ .

∘ βx1(x2 − t2)+ β(x1 − t1)+x2 β(x1 − t1)+(x2 − t2)+ β ≤ 0.

When are they axially concave?

Additive 
Concavity

Total 
Concavity = +

Axially 
Concave 

Interactions



Totally Concave Functions

f(x1, x2) = a0 + a1x1 + a2x2 − ∫ (x1 − t1)+ dν1(t1) − ∫ (x2 − t2)+ dν2(t2)

+a12x1x2 − x1 ⋅ ∫ (x2 − t2)+ dν1=0,2 − x2 ⋅ ∫ (x1 − t1)+ dν1,2=0

−∫ (x1 − t1)+(x2 − t2)+ dν12(t1, t2),

where  are measures on  and  is a measure on .ν1, ν2, ν1=0,2, ν1,2=0 (0,1) ν12 (0,1)2



If    is a smooth totally concave function, then  

, , , , and .

f
∂2f
∂x2
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∂x2

2
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∂3f
∂x1x2

2
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1x2
2

≤ 0



Characterization via Derivatives

 General Concavity:  , , and .∘
∂2f
∂x2

1
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1
⋅
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 Axial Concavity:   and .∘
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 Total Concavity:   

, , , , and .
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Extension to Higher Dimensions

Recall that when ,    is totally concave if  

, , , , and ;

d = 2 f
∂2f
∂x2

1
≤ 0

∂2f
∂x2

2
≤ 0

∂3f
∂x1x2

2
≤ 0

∂3f
∂x2

1x2
≤ 0

∂4f
∂x2

1x2
2

≤ 0

that is, 

 

for every  with .

∂p1+p2f
∂xp1

1 ∂xp2
2

≤ 0

(p1, p2) ∈ {0,1,2}2 max{p1, p2} = 2



For general ,    is totally concave if  

 

for every  with 

d f
∂p1+⋯+pdf
∂xp1

1 ⋯∂xpd
d

≤ 0

(p1, …, pd) ∈ {0,1,2}d max
k

pk = 2



Totally Concave Regression

Data:  where  and (x(1), y1), …, (x(n), yn) x(i) ∈ [0,1]d yi ∈ ℝ

̂fTC ∈ argmin
f: totally concave

n

∑
i=1

(yi − f(x(i)))2

It can be computed via finite-dimensional convex optimization algorithms.



Rate of Convergence
Under the standard set of model assumptions: 

(1)   where    is totally concave and  

(2)  form an equally-spaced lattice,

yi = f*(x(i)) + ϵi f* ϵi
i.i.d.∼ N(0, σ2)

x(1), …, x(n)

we have 

𝔼[ 1
n

n

∑
i=1

( ̂fTC(x(i)) − f*(x(i)))2] = O(n− 4
5 (log n)

3(2d − 1)
5 ) .

 can avoid the curse of dimensionality to some extent.̂fTC

multiplicative constant depends on , and d, σ f*



Extensions

 We can impose total concavity only on a subset of covariates.  

The other covariates only appear via linear terms. 

∘

All of them are implemented in the R package regmdc, available at  

https://github.com/DohyeongKi/regmdc.

 

where  is a totally concave function and .

f(x1, …, xd) = f1(x1, …, xp) + ap+1xp+1 + ⋯ + adxd

f1 ap+1, …, ad ∈ ℝ

 We can restrict the order of interactions.  

This leads to a faster rate of convergence. 

∘



Thank you for your attention!

https://arxiv.org/abs/2501.04360
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