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XGBoost 

Function Class Extending Finite Sums 
of Regression Trees

̂f d,s
n,V ∈ argmin

f {
n

∑
i=1

(yi − f(x(i)))2 : f ∈ ℱd,s
∞−ST, Vd,s

∞−XGB( f ) ≤ V}
Accuracy of the Idealized Target

XGBoost (eXtreme Gradient Boosting) has achieved huge 
empirical success, but it is not well-understood theoretically.

XGBoost aims to (approximately) minimize least squares plus 
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XGBoost fits a finite sum of regression trees to data.

bL,U
l,u (x1, …, xd) := ∏

j∈L

1(xj ≥ lj) ⋅ ∏
j∈U

1(xj < uj)

fc,{νL,U}(x1, …, xd) := c + ∑
0<|L|+|U|≤s

∫ℝ|L|+|U|

bL,U
l,u (x1, …, xd) dνL,U(l, u)

Vd,s
∞−XGB( f ) := inf { ∑

0<|L|+|U|≤s

∥νL,U∥TV : fc,{νL,U} ≡ f}
where  denotes the total variation of a signed measure ∥ν∥TV ν

Vd,s
∞−XGB( f ) = inf {∑

k

∥wk∥1} =: Vd,s
XGB( f )

 is also a least squares estimator over all  with 
, i.e., 

̂f d,s
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Let  be the sub-collection of  where  are 
discrete and supported on the midpoints of observations.

ℱd,s
STM ℱd,s

ST νL,U

squared  norm 
is also common

ℓ2

(1)   where    and  ,yi = f*(x(i)) + ϵi f* ∈ ℱd,s
∞−ST ϵi

i.i.d.∼ N(0, σ2)

(2)   for some density  that has compact support 
and is bounded above, i.e., .

x(i) i.i.d.∼ p0 p0
∥p0∥∞ ≤ B

If , thenV > Vd,s
∞−XGB( f*)

can be more general

where (1)  is the number of leaves in the th tree, 
          (2)  is its vector of leaf node values.
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Although computationally infeasible, the minimizer of this 
problem can be viewed as an idealized target of XGBoost.

Studying this idealized target is helpful in understanding 
XGBoost better and in answering questions like:

Q. What kinds of functions can XGBoost, in 
principle, learn efficiently?

We restrict to regression trees whose splits are based on 
whether  or  (not  or ). 1(xj ≥ tj) 1(xj < tj) 1(xj > tj) 1(xj ≤ tj)

Every regression tree can be expressed as a finite linear 
combination of  

where (1)  (not necessarily disjoint) and                        
          (2) each .

L, U ⊆ {1,…, d}
lj, uj ∈ ℝ

Why? Every regression tree can be decomposed into paths 
from the root node to each leaf node. 

For each path,  (resp., ) is the set of indices  for which the 
condition  (resp., ) appearing on the path.

L U j
1(xj ≥ lj) 1(xj < uj)

Example) , , and d = 2 L = {1} U = {1,2}

bL,U
l,u (x1, x2) = 1(l1 ≤ x1 < u1) ⋅ 1(x2 < u2)

We consider infinite linear combinations of these basis 
functions  with  for some fixed .bL,U

l,u |L | + |U | ≤ s s

We define  as the collection of all functions :ℱd,s
∞−ST f : ℝd → ℝ

where  are finite signed (Borel) measures on .νL,U ℝ|L|+|U|

 is an infinite dimensional extension of the class  of 
finite sums of regression trees with maximum depth .
ℱd,s

∞−ST ℱd,s
ST

s

 consistent with XGBoost whose  by default.max_depth = 6

Complexity Extending XGBoost Penalty
Infinite linear combination representation  is not unique 
for each .

fc,{νL,U}

f ∈ ℱd,s
∞−ST

Define the complexity of  asf ∈ ℱd,s
∞−ST

Main Result 1:
If ,  i.e.,   is a finite sum of regression trees,f ∈ ℱd,s

ST f

where the infimum is over all representations of  into a finite 
sum of regression trees.

f

  is an extension of XGBoost penalty with Vd,s
∞−XGB( ⋅ ) γ = 0

 means no penalty on numbers of leaves; the default 
choice by XGBoost
γ = 0

Idealized Target of XGBoost

By default, XGBoost uses such midpoints for tree splits when 
datasets are small but switches to quantiles for larger datasets.

Main Result 2:

Main Result 3:
Assume the following random design setting:

𝔼[∫ ( ̂f d,s
n,V(x) − f*(x))2p0(x) dx] = O(n−2/3(log n)4(min(s,d)−1)/3) .

It can also be proved that this rate is nearly minimax optimal. 

constant factor depends 
on , and B, d, V σ

Whether XGBoost itself achieves a similar nearly dimension-
free rate of convergence is an open problem. 

XGBoost produces a discrete-valued tree fit, yet it seems to 
learn continuous functions quite effectively. How so?

Least squares estimator  over all  with 
 can be seen as an idealized target of XGBoost.
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