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XGBoost

XGBoost fits a finite sum of regression trees to data.
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XGBoost fits a finite sum of regression trees to data.

_|_ oo _|_
W1 Wi4 Wkr  Wk3 Wk4

e ><\ /74 —

Wi = (Wll’ Wi9s - .. leaf welghts Wrg = (WKI’ Wgn, ...



Motivating Question

XGBoost produces a discrete-valued fit (it takes only finite different values),

yet it seems to learn continuous functions quite well.

Q. What kinds of functions can XGBoost learn efficiently?



XGBoost Optimization Problem

Given (X(l), V)5 «ees (X(”), y,) (xW e[

n

=1

y; €

), XGBoost aims to minimize
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over finite sums of regression trees with depth < s,

where (1) 7, is the number of leaves in the kth tree,

(2) w, is its vector of leaf weights.

— The solution to this problem can be seen as an idealized target of XGBoost

Q. What kinds of functions can XGBoost learn efficiently, in principle?



Finite Sums of Regression Trees

Every finite sum of regression trees with depth < s can be expressed as a finite
linear combination of

bL U(xl, e X)) 1= Hl(x]- > 1) - Hl(xj < u;)
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where 1) L, U C {1,...,d} (possibly empty and not necessarily disjoint)

(2) |[L]+|U| <s,and (3) each [, u; € R.



bL U(xl, ey X ) = Hl(xj > 1) - Hl(xj < u;)

jeL jeu
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Infinite-Dimensional Extension

We consider infinite linear combinations of blL{lU with |L|+ |U| < s.

We define ¢ o7 38 the collection of all functions f : |
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of the form:

fC,{UL’U}(xl, X)) = C Z J bL U(xl, Xy dyy (1, a)
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O<|L|+|U|<s

where v; ;; are finite signed (Borel) measures on |

Fdss is an infinite dimensional extension of F%*
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the class of finite sums of regression trees with depth < .

LI+|U|



Complexity Measure

Define the complexity of f € F# d’s_ o S
d, N . _
Vi cp=intd D iy fop =1
O<|L|+|U|<s

where the infimum is over all possible representations f_ U] of f.

The total variation ||v|| Ty of a signed measure v on R™ is given by

by =1I®™ = sup ) |uP)
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Main Result 1:

If fe F%5 ie., fis a finite sum of regression trees,

ST’
Ve opl) = Vg = inf { zk‘, el |

where the infimum is over all representations of f into a finite sum of trees.

Recall that the XGBoost penalty is
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Main Result 1:

If fe F%5, ie., fisa finite sum of regression trees,

ST’
Ve opl) = Vg = inf { zk‘, el |

where the infimum is over all representations of f into a finite sum of trees.

— V4s XGB( - ) is an extension of the XGBoost penalty with y = 0

y = 0 means no penalty on numbers of leaves; the default choice by XGBoost



Idealized Target for XGBoost

Recall that we view

n
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k

=1

as an idealized target of XGBoost (with y = 0).

The constrained version of this problem can be more formally written as

n

rd, s - o (D)2 . oz d,s d,s
v € argmm{ 21 (yl f(x )) [ E JST and VXGB(f) < V}.



Main Result 2:

rd.,s

v isa least squares estimator over all f€ F%* __ with V4* () LV
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— ldealized target of XGBoost is, in fact, a solution to

~d d,s
the least squares problem over #° ST with a constraint on V —XGB( )
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Further Insight into # ST and V —XGB( )

Y- ¥ GB( - ) is closely related to Hardy—Krause variation

([Aistleitner and Dick 15], [Leonov 96], [Owen 05]).

Hardy—Krause variation has been used for non-parametric regression; e.g., in
K ang, Guntuboyina, and Sen 21|, — Hardy-Krause variation denoising
[Benkeser and van der Laan 16],

Schuler, L1, and van der LLaan 22|, — Highly Adaptive Lasso

[van der Laan, Benkeser, and Cai 23]



(1)
PZ‘Z’CZ_ST = {f: HK(f) < + o0 and f is right—continuous}

When s < d, we need some extra condition.

o d,s
(2) Forevery f € Jfoo_ ST

HK(f)/ min(2* — 1,2%) < Vds " vpt) = HK().



Theoretical Accuracy of the Idealized Target

Assume the standard random design setting:

can be replaced by a
iid " weaker assumption

(1) y; = f*(x) + €, where f* € %d,S—ST and ¢, "~ N(0, 6%

(2) x¥ Lid. po for some density p, that has compact support and

is bounded above,



Main Result 3:

d,s K constant factor depends
ItV > Voo—XGB( 1), then we have e
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This rate is also a nearly minimax optimal rate for the estimation over
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Elements of F%* g €an be learned efficiently by XGBoost, in principle!



Summary

We study a natural infinite-dimensional function class, along with a complexity
measure, for XGBoost

This function class sheds light on what functions XGBoost can learn efficiently
Complexity measure is closely related to Hardy—Krause variation

The least squares estimator, which can be seen as an idealized target for
XGBoost, achieves a nearly dimension-free rate of convergence

Whether XGBoost’s algorithm achieves a similar rate is an open problem
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