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XGBoost fits a finite sum of regression trees to data.

Regression tree?

x1 < t1 x1 ≥ t1

x3 < t3 x3 ≥ t3 x2 < t2 x2 ≥ t2

w1 w2 w3 w4

leaf weights

depth = 2

number of leaves = 4

Restrict to whether  

      or   

(exclude    or  )

xj ≥ tj xj < tj

xj > tj xj ≤ tj

XGBoost



XGBoost fits a finite sum of regression trees to data.

x1 < t1 x1 ≥ t1

x3 < t3 x3 ≥ t3 x2 < t2 x2 ≥ t2

w11 w12 w13 w14

x2 < t21 x2 ≥ t21

x2 < t22 x2 ≥ t22 x4 < t4 x4 ≥ t4

wK1 wK2 wK3 wK4

+ ⋯ +

w1 = (w11, w12, …, ) wK = (wK1, wK2, …, )leaf weights



Motivating Question

XGBoost produces a discrete-valued fit (it takes only finite different values),  

yet it seems to learn continuous functions quite well.

Q. What kinds of functions can XGBoost learn efficiently?



Given  ( , ), XGBoost aims to minimize(x(1), y1), …, (x(n), yn) x(i) ∈ ℝd yi ∈ ℝ

where (1)  is the number of leaves in the th tree, Tk k

(2)  is its vector of leaf weights.wk

n

∑
i=1

(yi − f(x(i)))2 + γ∑
k

Tk + α∑
k

∥wk∥1
squared  norm 
is also common

L2

XGBoost Optimization Problem

 The solution to this problem can be seen as an idealized target of XGBoost→

Q. What kinds of functions can XGBoost learn efficiently, in principle?

over finite sums of regression trees with depth ,≤ s



Finite Sums of Regression Trees

Every finite sum of regression trees with depth  can be expressed as a finite 
linear combination of

≤ s

bL,U
l,u (x1, …, xd) := ∏

j∈L

1(xj ≥ lj) ⋅ ∏
j∈U

1(xj < uj)

where (1)  (possibly empty and not necessarily disjoint) 

            (2) , and (3) each .

L, U ⊆ {1,…, d}

|L | + |U | ≤ s lj, uj ∈ ℝ



bL,U
l,u (x1, …, xd) = ∏

j∈L

1(xj ≥ lj) ⋅ ∏
j∈U

1(xj < uj)

x1 < t11 x1 ≥ t11

x1 < t12 x1 ≥ t12 x2 < t21 x2 ≥ t22

w1 w2 w3 w4

, L = {1,2} U = ∅, L = {1} U = {1}



Infinite-Dimensional Extension
We consider infinite linear combinations of  with .bL,U

l,u |L | + |U | ≤ s

fc,{νL,U}(x1, …, xd) := c + ∑
0<|L|+|U|≤s

∫ℝ|L|+|U|

bL,U
l,u (x1, …, xd) dνL,U(l, u)

We define  as the collection of all functions   of the form:ℱd,s
∞−ST f : ℝd → ℝ

  is an infinite dimensional extension of ,  

            the class of finite sums of regression trees with depth .

→ ℱd,s
∞−ST ℱd,s

ST
≤ s

where  are finite signed (Borel) measures on .νL,U ℝ|L|+|U|



Complexity Measure

Define the complexity of   asf ∈ ℱd,s
∞−ST

Vd,s
∞−XGB( f ):= inf { ∑

0<|L|+|U|≤s

∥νL,U∥TV : fc,{νL,U} ≡ f}

The total variation  of a signed measure  on  is given by∥ν∥TV ν ℝm

∥ν∥TV = |ν | (ℝm) = sup
𝒫:partition of ℝm ∑

P∈𝒫

|ν(P) |

where the infimum is over all possible representations   of  .fc,{νL,U} f



Main Result 1:

If ,  i.e.,    is a finite sum of regression trees,f ∈ ℱd,s
ST f

Vd,s
∞−XGB( f ) = Vd,s

XGB( f ) := inf {∑
k

∥wk∥1}
where the infimum is over all representations of    into a finite sum of trees.f

Recall that the XGBoost penalty is

γ∑
k

Tk + α∑
k

∥wk∥1



Main Result 1:

If ,  i.e.,    is a finite sum of regression trees,f ∈ ℱd,s
ST f

Vd,s
∞−XGB( f ) = Vd,s

XGB( f ) := inf {∑
k

∥wk∥1}
where the infimum is over all representations of    into a finite sum of trees.f

  is an extension of the XGBoost penalty with → Vd,s
∞−XGB( ⋅ ) γ = 0

 means no penalty on numbers of leaves; the default choice by XGBoost γ = 0



Idealized Target for XGBoost
Recall that we view

argmin{
n

∑
i=1

(yi − f(x(i)))2 + α∑
k

∥wk∥1}
as an idealized target of XGBoost (with ).γ = 0

The constrained version of this problem can be more formally written as

.̂f d,s
n,V ∈ argmin{

n

∑
i=1

(yi − f(x(i)))2 : f ∈ ℱd,s
ST  and  Vd,s

XGB( f ) ≤ V}



Main Result 2:

  is a least squares estimator over all   with .̂f d,s
n,V f ∈ ℱd,s

∞−ST Vd,s
∞−XGB( f ) ≤ V

 Idealized target of XGBoost is, in fact, a solution to  

           the least squares problem over  with a constraint on 

→

ℱd,s
∞−ST Vd,s

∞−XGB( ⋅ )



Further Insight into   and ℱd,s
∞−ST Vd,s

∞−XGB( ⋅ )

 is closely related to Hardy–Krause variation 

([Aistleitner and Dick 15], [Leonov 96], [Owen 05]).

Vd,s
∞−XGB( ⋅ )

Hardy–Krause variation has been used for non-parametric regression; e.g., in  

        [Fang, Guntuboyina, and Sen 21],  

        [Benkeser and van der Laan 16],  

        [Schuler, Li, and van der Laan 22],  

        [van der Laan, Benkeser, and Cai 23]

Hardy–Krause variation denoising

Highly Adaptive Lasso



(1)

.HK( f )/ min(2s − 1,2d) ≤ Vd,s
∞−XGB( f ) ≤ HK( f )

(2) For every  ,f ∈ ℱd,s
∞−ST

 ℱd,d
∞−ST = {f : HK( f ) < + ∞  and  f  is right-continuous}

When , we need some extra condition.s < d



Assume the standard random design setting:

(1)   where    and  yi = f*(x(i)) + ϵi f* ∈ ℱd,s
∞−ST ϵi

i.i.d.∼ N(0, σ2)
can be replaced by a 
weaker assumption

(2)   for some density  that has compact support and  

                                                                           is bounded above, 

x(i) i.i.d.∼ p0 p0

Theoretical Accuracy of the Idealized Target



If , then we haveV > Vd,s
∞−XGB( f*)

𝔼[∫ ( ̂f d,s
n,V(x) − f*(x))2 ⋅ p0(x) dx] = O(poly(d) ⋅ n−2/3(log n)4(min(s,d)−1)/3) .

constant factor depends 
on , and s, V σ

This rate is also a nearly minimax optimal rate for the estimation over

.{f ∈ ℱd,s
∞−ST : Vd,s

∞−XGB( f ) ≤ V}

Main Result 3:



ℱd,s
∞−ST

ℱd,s
ST

finite sum of 
regression trees ̂f d,s

n,V

LSE - Idealized 
Target of XGBoost

extension

Vd,s
∞−XGB( ⋅ ) ≤ V

Vd,s
XGB( ⋅ ) ≤ V

Elements of  can be learned efficiently by XGBoost, in principle!ℱd,s
∞−ST



Summary
We study a natural infinite-dimensional function class, along with a complexity 
measure, for XGBoost

Complexity measure is closely related to Hardy–Krause variation

This function class sheds light on what functions XGBoost can learn efficiently

The least squares estimator, which can be seen as an idealized target for 
XGBoost, achieves a nearly dimension-free rate of convergence

Whether XGBoost’s algorithm achieves a similar rate is an open problem
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