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XGBoost

Function Class Extending Finite Sums of Trees

Complexity Extending XGBoost Penalty 

Relation to Hardy–Krause Variation

Å

Least Squares Estimator (LSE)
A central object of interest is the following least squares estimator:

argmin
f {

n

∑
i=1

(yi − f(x(i)))2 : f ∈ ℱd,s
∞−st  and  V1

∞−xgb( f ) ≤ V } .

Theoretical Accuracy of LSE 

Infinite linear combination representation for  is not unique.f ∈ ℱd,s
∞−stAlthough XGBoost (eXtreme Gradient Boosting) has achieved remarkable 

empirical success, it has not been theoretically well-understood yet. 

XGBoost aims to (approximately) minimize least squares plus 

γ∑
k

Tk + α∑
k

∥wk∥1

where (1)  is the number of leaves in the th regression tree, 
          (2)  is its vector of leaf weights.

Tk k
wk

XGBoost fits a finite sum of regression trees to data.

XGBoost produces a discrete-valued tree fit, but it seems it also learns 
continuous functions quite effectively.

Q. What kinds of functions does XGBoost learn well?

Every regression tree can be expressed as a finite linear combination of 

bS
p,q,t(x1, …, xd) := ∏

j∈S
{1(qj = 0)1(pj(xj − tj) ≥ 0) + 1(qj = 1)1(pj(xj − tj) > 0)}

where (1) , (2) each , and (3) .S ⊆ {1,…, d} qj ∈ {0,1} pj ∈ {−1,1}

Example:  and d = 2 S = {1,2}

(1)  and , (p1, q1) = (1,0) (p2, q2) = (−1,0)

bS
p,q,t(x1, x2) = 1(x1 ≥ t1) ⋅ 1(x2 ≤ t2)

(2)  and , (p1, q1) = (1,1) (p2, q2) = (−1,1)

bS
p,q,t(x1, x2) = 1(x1 > t1) ⋅ 1(x2 < t2)

  determines whether the inequality is weak ( ) or strict ( ). ∘ qj ≥ >

  controls the direction of the inequality.∘ pj

  is a threshold associated with variable .∘ tj xj

fc,{νS
p,q}(x1, …, xd) = c + ∑

S:0<|S|≤s
∑

p∈{−1,1}|S|
∑

q∈{0,1}|S|
∫ℝ|S|

bS
p,q,t(x1, …, xd) dνS

p,q(tj, j ∈ S)

We consider infinite linear combinations of these basis functions with . |S | ≤ s

We define  as the collection of all functions  of the form:ℱd,s
∞−st f : ℝd → ℝ

 is an infinite dimensional extension of the class  of finite sums of 
regression trees with maximum depth .
ℱd,s

∞−st ℱd,s
st

s

 consistent with XGBoost whose  by default.max_depth = 6

Define the complexity of  asf ∈ ℱd,s
∞−st

V1
∞−xgb( f ) := inf { ∑

S:0<|S|≤s
∑

p∈{−1,1}|S|
∑

q∈{0,1}|S|

∥νS
p,q∥TV : fc,{νS

p,q} ≡ f}
where  denotes the total variation of a signed measure .∥ν∥TV ν

Main Result 1:
If ,  i.e.,   is a finite sum of regression trees,f ∈ ℱd,s

st f

V1
∞−xgb( f ) = inf {∑

k

∥wk∥1}
where the infimum is over all representations of  in a finite sum of trees.f

  is an extension of the XGBoost penalty with V1
∞−xgb( ⋅ ) γ = 0

 means no penalty on numbers of leaves; the default choice by XGBoost γ = 0 Main Result 2:
The least squares estimator  over all  with  is a least  
squares estimator over all  with .

̂f d,s
n,V f ∈ ℱd,s

rstm V1
∞−xgb( f ) ≤ V

f ∈ ℱd,s
∞−st V1

∞−xgb( f ) ≤ V

Let  denote the collection of all finite linear combinations of  whereℱd,s
rstm bS

p,q,t

   depth is no larger than ∘ |S | ≤ s s

    are products only of  and ∘ p = 1 − 2q bS
p,q,t 1(xj ≥ tj) 1(xj < tj)

  are midpoints between observed values of the th covariate∘ tj j

 aligns with XGBoost’s tree-splitting scheme where one branch corresponds 
to  and the other to 1(xj ≥ tj) 1(xj < tj)

 aligns with XGBoost’s split points for numerical variables
 By default ( ), XGBoost uses midpoints when datasets are 

small but switches to quantiles for larger datasets.
tree_method = auto

XGBoost can be viewed as a greedy solver for the penalized version of this 
least squares problem over .ℱd,s

rstm

Main Result 3:

squared  norm is 
also common

L2

Assume the following random design setting:

(1)   where    and  yi = f*(x(i)) + ϵi f* ∈ ℱd,s
∞−st ϵi

i.i.d.∼ N(0, σ2)

(2)   for some density x(i) i.i.d.∼ p0 p0

(3)  has compact support: there exist  such that p0 M1, …, Md > 0

  unless  p0(x) = 0 x ∈
d

∏
j=1

[−
Mj

2
,

Mj

2 ]
(4)  is bounded above;  .p0 B := M1⋯Md ⋅ sup

x
p0(x) < + ∞

If , then we haveV > V1
∞−xgb( f*)

𝔼[∫ ( ̂f d,s
n,V(x) − f*(x))2 ⋅ p0(x) dx] = O(n−2/3(log n)4(s−1)/3) .

It can also be proved that this rate is nearly minimax optimal. 

Whether XGBoost itself achieves a similar nearly dimension-free rate of 
convergence is an open problem. 

can be replaced 
by a more general 
assumption

As the domain  is unbounded, we need to place an anchor for Hardy–
Krause variation at infinity (either  or  for each coordinate). 

ℝd

−∞ +∞

Let  denote the anchoring point.a = (a1, …, ad) ∈ {−∞, ∞}d

For a function  and , define f : ℝd → ℝ S ⊆ {1,…, d}

  for  f S
(aj,j∈Sc)(xj, j ∈ S) = lim

(xj,j∈Sc)→(aj,j∈Sc)
f(x1, …, xd) (xj, j ∈ S) ∈ ℝ|S|

Hardy–Krause variation of  anchored at  is defined byf a

.HKa( f ) = ∑
∅≠S⊆{1,…,d}

Vit( f S
(aj,j∈Sc))

Hardy–Krause variation is asymmetric, whereas  is symmetric.V1
∞−xgb( ⋅ )

Example:  and d = s = 2 a = (−∞, − ∞)

  but  HKa(1( ⋅1 ≥ t1, ⋅2 ≥ t2)) = 1 HKa(1( ⋅1 < t1, ⋅2 < t2)) = 3

V1
∞−xgb(1( ⋅1 ≥ t1, ⋅2 ≥ t2)) = V1

∞−xgb(1( ⋅1 < t1, ⋅2 < t2)) = 1

In fact,  is a symmetrized version of Hardy–Krause variation;V1
∞−xgb( ⋅ )

where  denotes Vitali variation.Vit( ⋅ )

 is the infimal convolution of  over all anchors , 

when restricted to the subclass  consisting of right-continuous functions
V1

∞−xgb( ⋅ ) HKa( ⋅ ) a ∈ {−∞, ∞}d

ℱd,s
∞−rst

V1
∞−xgb( f ) = inf { ∑

a∈{−∞,∞}d

HKa( fa) : ∑
a∈{−∞,∞}d

fa ≡ f  and  fa ∈ ℱd,s
∞−rst}

constant factor 
depends on 

, and B, d, V σ


