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Motivating Example

Farnings dataset (ex|1029 from R package Sleuth3):

The of 20,96/ full-time non-black male workers in 1987 along
with their (> 8) and (1 <-<40).
We predict the (y) from (x;) and (x,)

using convex/concave relations between them.
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There Is a clear relation between and

But 1t Is not clear whether we have a or relation between
and

Also, we can see that we need to consider between and

(see also [Lemieux 2006] and references therein).

T log of Earnings (y) Is an additive function of Education (x,) and Experience

() 1€,y = flx), %) = f1(x)) + fo(x), then flxy, 2) — f(x1, ¥2) = fo(z0) + () 1S
constant in x;. But we can see from the left plot, it is not the case for our data.

Question. How can we fit to the data a function y = f(x;, x,) that is
N x; and or N x, and also

models between x; and x,?

Additive Convex Regression

Suppose we are given (xV,y)),...,x",y ) (x) € [0,1]9,y, € R) and we want to
fit a (or ) function y = f(x) to the data.

It we don't need to consider interaction between predictors, a natural choice
S which restricts to functions of the form

SOy o xg) = f100) + -0+ f4(xp)

where fi, ..., f; are univariate convex (or concave) functions.

Also, It Is known that we just need to search each f, among linear
combinations of 1 and

whose coefficient Is nonnegative unless r = 0 (see, e.g., [Guntuboyina 2015]).

However, as we need to consider interaction between predictors, additive
convex regression I1s not enough for our purpose.

Interaction

ow do we extend linear regression to take interaction into consideration?

— We simply add products of predictors to linear regression models.

Example) Two-way Interactions [hree-way interaction

y = pix; + Prxy + Pyxs + Py + 03 + 051 + 123

Recall that for univariate convex (resp., concave) regression, basis functions are

and the coefficients of (- —¢), for ¢t € (0,1) Is (resp., ).

We can thus model m-way interactions with

for S C {1,...,d} with |S| = m.

What about the signs of coefficients?

Our top priority Is to keep coordinate-wise convexity (or concavity).

Observe that

ﬂ'H(Xk_tk)+ —

{coordinate—wise convex iff>0
keS

coordinate-wise concave if f < 0.
Hence, for example, It d = 2, In each case below, we can model interaction

between x; and x, only with

o Coordinate-wise convexity (resp., concavity) both in x; and x,

o coordinate-wise convexity and concavity in x; and x,

— As the second case Is relatively simple, we focus on the first case from now on.

Function Class

Our function class 5’7% s defined as the collection of functions
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S C {1,....d} [0,HSN\{(O,...,0)} res
0<|S|<s

where aq € R and on [0,DPN\{(0,...,0)} for each subset
S of {1,...,d} with | S| < s. Here, s Is a restriction on interaction order.

F =~ is essentially the class of coriginally introduced by

. Popoviciu and more recently described in [Gal 2010].
his 1s why we call our method

keS infinite linear combinations via measures

Estimator

Our estimator is then defined by

fﬁ’s = arg;rlin{ Z (yi —f(x(i)))2 L f E 9‘7‘}2 } :
i=1
\

Alternative characterization via constraints on derivatives:
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No tuning parameter

Observe that the
take along

of derivatives Is as high as 24, but we

This characterization is in fact not fully rigorous as second-order derivatives
may not even exist. A rigorous version can be obtained by instead restricting
first-order derivatives to be monotonic.

Computation

We can search f%5 over inear combinations of

(g i) = [ [ G =104 18] < s,

keS
where observed k" components
A
and the corresponding coefficient Is unless

We can also approximate f* by restricting , instead to a set of manageable
size; e.g., t, € {0, .05, .10, ... , 1}.

T heoretical Results

Under the standard set of model assumptions:

(1) y,=f5cD) +¢ where freF% and ¢ "< N, 0?)
(2) IV, ..., x" form an equally-spaced lattice,

we have

o N
|2 (Fra—pra®)

— Our estimator 45 can avoid the usual curse of dimensionality to some extent.
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