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Motivating Example

Additive Convex Regression

Interaction

Function Class

Computation

Earnings dataset (ex1029 from R package Sleuth3):

Our function class  is defined as the collection of functionsℱd,s
TC

(x1, …, xd) ↦ ∑
S ⊆ {1,…, d}

|S | ≤ s

aS ⋅ ∏
k∈S

xk

where  and  is a positive measure on  for each subset 
 of  with . Here,  is a restriction on interaction order.

aS ∈ ℝ νS [0,1)|S|∖{(0,…,0)}
S {1,…, d} |S | ≤ s s

+ ∑
S ⊆ {1,…, d}
0 < |S | ≤ s

∫[0,1)|S|∖{(0,…,0)}
∏
k∈S

(xk − tk)+ dνS(tk, k ∈ S)

 is essentially the class of totally convex functions, originally introduced by 
T. Popoviciu and more recently described in [Gal 2010]. 
This is why we call our method totally convex regression.

ℱ2,2
TC

Estimator
Our estimator is then defined by

̂f d,s
n ∈ argmin

f {
n

∑
i=1

(yi − f(x(i)))2 : f ∈ ℱd,s
TC } .

Alternative characterization via constraints on derivatives:

̂f d,d
n ∈ argmin

f {
n

∑
i=1

(yi − f(x(i)))2 :
∂p1+⋯+pdf
∂xp1

1 ⋯∂xpd
d

≥ 0

.for every  (p1, …, pd) ∈ {0,1,2}d  with  max
k

pk = 2}
Observe that the total order  of derivatives is as high as , but we 
take at most two derivatives along each coordinate.

p1 + ⋯ + pd 2d

We can search  over finite linear combinations of ̂f d,s
n

,(x1, …, xd) ↦ ∏
k∈S

(xk − tk)+, |S | ≤ s

where

tk ∈ {0} ∪ {x(i)
k : 1 ≤ i ≤ n}

and the corresponding coefficient is nonnegative unless .(tk, k ∈ S) = (0,…,0)

We can also approximate  by restricting  instead to a set of manageable 
size; e.g., 

̂f d,s
n tk

tk ∈ {0, .05, .10, … , 1} .

Theoretical Results
Under the standard set of model assumptions:

(1)     where      and  yi = f*(x(i)) + ϵi f* ∈ ℱd,s
TC ϵi

i.i.d.∼ N(0, σ2)

(2)   form an equally-spaced lattice,x(1), …, x(n)

we have

𝔼[ 1
n

n

∑
i=1

( ̂f d,s
n (x(i)) − f*(x(i)))2] = O(n− 4

5 (log n)
3(2s − 1)

5 ) .
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Our estimator  can avoid the usual curse of dimensionality to some extent.̂f d,s
n

This characterization is in fact not fully rigorous as second-order derivatives 
may not even exist. A rigorous version can be obtained by instead restricting 
first-order derivatives to be monotonic.

How do we extend linear regression to take interaction into consideration?
We simply add products of predictors to linear regression models.

Example)

    y = β1x1 + β2x2 + β3x3 + β12x1x2 +β23x2x3 +β31x3x1 +β123 x1x2x3

Two-way interactions Three-way interaction

Recall that for univariate convex (resp., concave) regression, basis functions are
1  and  ( ⋅ − t)+, t ∈ [0,1)

and the coefficients of  for  is nonnegative (resp., nonpositive). ( ⋅ − t)+ t ∈ (0,1)

We can thus model -way interactions withm

    for    with  .∏
k∈S

(xk − tk)+ S ⊆ {1,…, d} |S | = m

What about the signs of coefficients?
Our top priority is to keep coordinate-wise convexity (or concavity).

Observe that

β ⋅ ∏
k∈S

(xk − tk)+ = {coordinate-wise convex  if β ≥ 0
coordinate-wise concave  if β ≤ 0.

Hence, for example, if , in each case below, we can model interaction 
between  and  only with 

d = 2
x1 x2

 Coordinate-wise convexity (resp., concavity) both in  and ∘ x1 x2

 (resp., )βx1x2, β ∈ ℝ  and  β(x1 − t1)+(x2 − t2)+, β ≥ 0 β ≤ 0

 Mixed coordinate-wise convexity and concavity in  and ∘ x1 x2

βx1x2, β ∈ ℝ

As the second case is relatively simple, we focus on the first case from now on.

The weekly earnings of 20,967 full-time non-black male workers in 1987 along 
with their years of education ( ) and years of experience ( ).≥ 8 1 ≤ ⋅ ≤ 40

We predict the log of Earnings ( ) from Education ( ) and Experience ( ) 
using convex/concave relations between them. 

y x1 x2 no tuning parameter

Suppose we are given  ( ) and we want to 
fit a coordinate-wise convex (or concave) function  to the data.

(x(1), y1), …, (x(n), yn) x(i) ∈ [0,1]d, yi ∈ ℝ
y = f(x)

There is a clear concave relation between log of Earnings and Experience. 
But it is not clear whether we have a convex or concave relation between log 
of Earnings and Education. 

Also, we can see that we need to consider interaction between Education and 
Experience (see also [Lemieux 2006] and references therein).

[Lemieux 2006] Lemieux, T. (2006) The “Mincer equation” thirty years after schooling, experience, and 
earnings. In Jacob Mincer a pioneer of modern labor economics (pp. 127-145). Springer. 

If log of Earnings ( ) is an additive function of Education ( ) and Experience 
( ), i.e., , then  is 
constant in . But we can see from the left plot, it is not the case for our data.

y x1
x2 y = f(x1, x2) = f1(x1) + f2(x2) f(x1, z2) − f(x1, y2) = f2(z2) + f2(y2)

x1

Question. How can we fit to the data a function  that is coordinate-
wise concave in  and coordinate-wise convex or concave in  and also 
models interaction between  and ?

y = f(x1, x2)
x1 x2

x1 x2

Also, it is known that we just need to search each  among linear 
combinations of  and  

fk
1

( ⋅ − t)+ := max( ⋅ − t, 0), t ∈ [0,1)
whose coefficient is nonnegative unless  (see, e.g., [Guntuboyina 2015]).t = 0

[Guntuboyina 2015] Guntuboyina, A. & Sen, B. (2015) Global risk bounds and adaptation in univariate 
convex regression. Probability Theory and Related Fields, 163(1), 379-411.

If we don't need to consider interaction between predictors, a natural choice 
is additive convex regression, which restricts to functions of the form

f(x1, …, xd) = f1(x1) + ⋯ + fd(xd)
where  are univariate convex (or concave) functions.f1, …, fd

However, as we need to consider interaction between predictors, additive 
convex regression is not enough for our purpose.

observed  componentskth

infinite linear combinations via measures


