Totally Convex Regression

Dohyeong Ki & Adityanand Guntuboyina

Department of Statistics, University of California, Berkeley

Motivating Example

Earnings dataset (ex 1029 from R package Sleuth 3):

The weekly earnings of 20,967 full-time non-black male workers in 1987 along with their years of education (≥ 8) and years of experience ($1 \leq \cdot \leq 40$).

We predict the log of Earnings (y) from Education (x_1) and Experience (x_2) using convex/concave relations between them.

There is a clear concave relation between log of Earnings and Experience. But it is not clear whether we have a convex or concave relation between log of Earnings and Education.

Also, we can see that we need to consider interaction between Education and Experience (see also [Lemieux 2006] and references therein).

If log of Earnings (y) is an additive function of Education (x_1) and Experience (x_2) , i.e., $y = f(x_1, x_2) = f_1(x_1) + f_2(x_2)$, then $f(x_1, z_2) - f(x_1, y_2) = f_2(z_2) + f_2(y_2)$ is constant in x_1 . But we can see from the left plot, it is not the case for our data.

Question. How can we fit to the data a function $y = f(x_1, x_2)$ that is coordinatewise concave in x_1 and coordinate-wise convex or concave in x_2 and also models interaction between x_1 and x_2 ?

Additive Convex Regression

Suppose we are given $(x^{(1)}, y_1), ..., (x^{(n)}, y_n)$ $(x^{(i)} \in [0,1]^d, y_i \in \mathbb{R})$ and we want to fit a coordinate-wise convex (or concave) function y = f(x) to the data.

If we don't need to consider interaction between predictors, a natural choice is additive convex regression, which restricts to functions of the form

$$f(x_1, ..., x_d) = f_1(x_1) + \cdots + f_d(x_d)$$

where $f_1, ..., f_d$ are univariate convex (or concave) functions.

Also, it is known that we just need to search each f_k among linear combinations of 1 and

$$(\cdot - t)_{+} := \max(\cdot - t, 0), t \in [0,1)$$

whose coefficient is nonnegative unless t = 0 (see, e.g., [Guntuboyina 2015]).

However, as we need to consider interaction between predictors, additive convex regression is not enough for our purpose.

Interaction

How do we extend linear regression to take interaction into consideration? → We simply add products of predictors to linear regression models.

Example) Two-way interactions Three-way interaction
$$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{12} x_1 x_2 + \beta_{23} x_2 x_3 + \beta_{31} x_3 x_1 + \beta_{123} x_1 x_2 x_3$$

Recall that for univariate convex (resp., concave) regression, basis functions are

1 and
$$(\cdot - t)_+, t \in [0,1)$$

and the coefficients of $(\cdot - t)_+$ for $t \in (0,1)$ is nonnegative (resp., nonpositive).

We can thus model m-way interactions with

$$\prod_{k \in S} (x_k - t_k)_+ \quad \text{for } S \subseteq \{1, \dots, d\} \text{ with } |S| = m.$$

What about the signs of coefficients?

Our top priority is to keep coordinate-wise convexity (or concavity).

Observe that

$$\beta \cdot \prod_{k \in S} (x_k - t_k)_+ = \begin{cases} \text{coordinate-wise convex} & \text{if } \beta \ge 0 \\ \text{coordinate-wise concave} & \text{if } \beta \le 0. \end{cases}$$

Hence, for example, if d = 2, in each case below, we can model interaction between x_1 and x_2 only with

• Coordinate-wise convexity (resp., concavity) both in x_1 and x_2

$$\beta x_1 x_2, \beta \in \mathbb{R}$$
 and $\beta (x_1 - t_1)_+ (x_2 - t_2)_+, \beta \ge 0$ (resp., $\beta \le 0$)

• Mixed coordinate-wise convexity and concavity in x_1 and x_2

$$\beta x_1 x_2, \beta \in \mathbb{R}$$

→ As the second case is relatively simple, we focus on the first case from now on.

Function Class

Our function class $\mathcal{F}_{TC}^{d,s}$ is defined as the collection of functions

$$(x_1,\ldots,x_d)\mapsto \sum_{\substack{S\subseteq\{1,\ldots,d\}\\|S|\leq s}}a_S\cdot\prod_{k\in S}x_k \text{ infinite linear combinations via measures} \\ +\sum_{\substack{S\subseteq\{1,\ldots,d\}\\0<|S|\leq s}}\int_{[0,1)^{|S|}\setminus\{(0,\ldots,0)\}}t_{k\in S}$$

where $a_S \in \mathbb{R}$ and ν_S is a positive measure on $[0,1)^{|S|} \setminus \{(0,...,0)\}$ for each subset S of $\{1, ..., d\}$ with $|S| \le s$. Here, s is a restriction on interaction order.

 $\mathcal{F}_{TC}^{2,2}$ is essentially the class of totally convex functions, originally introduced by T. Popoviciu and more recently described in [Gal 2010]. This is why we call our method totally convex regression.

Estimator

Our estimator is then defined by

$$\hat{f}_n^{d,s} \in \mathop{\rm argmin}_f \bigg\{ \sum_{i=1}^n \big(y_i - f(x^{(i)}) \big)^2 : f \in \mathcal{F}_{TC}^{d,s} \bigg\} \,.$$
 Alternative characterization via constraints on derivatives:

no tuning parameter

$$\hat{f}_n^{d,d} \in \operatorname{argmin} \left\{ \sum_{i=1}^n \left(y_i - f(x^{(i)}) \right)^2 : \frac{\partial^{p_1 + \dots + p_d f}}{\partial x_1^{p_1} \dots \partial x_d^{p_d}} \ge 0 \right.$$

$$\text{for every } (p_1, \dots, p_d) \in \{0, 1, 2\}^d \text{ with } \max_{i} p_i = 2 \right\}.$$

Observe that the total order $p_1 + \cdots + p_d$ of derivatives is as high as 2d, but we take at most two derivatives along each coordinate.

This characterization is in fact not fully rigorous as second-order derivatives may not even exist. A rigorous version can be obtained by instead restricting first-order derivatives to be monotonic.

Computation

We can search $\hat{f}_n^{d,s}$ over finite linear combinations of

$$(x_1, ..., x_d) \mapsto \prod_{k \in S} (x_k - t_k)_+, |S| \le s,$$

where

observed
$$k^{\text{th}}$$
 components $t_k \in \{0\} \cup \{x_k^{(i)}: 1 \le i \le n\}$

and the corresponding coefficient is nonnegative unless $(t_k, k \in S) = (0, ..., 0)$.

We can also approximate $\hat{f}_{n}^{d,s}$ by restricting t_{k} instead to a set of manageable size; e.g., $t_k \in \{0, .05, .10, ..., 1\}$.

Theoretical Results

Under the standard set of model assumptions:

(1)
$$y_i = f^*(x^{(i)}) + \epsilon_i$$
 where $f^* \in \mathcal{F}_{TC}^{d,s}$ and $\epsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$

(2)
$$x^{(1)}, ..., x^{(n)}$$
 form an equally-spaced lattice,

we have

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\left(\hat{f}_{n}^{d,s}(x^{(i)})-f^{*}(x^{(i)})\right)^{2}\right]=O(n^{-\frac{4}{5}}(\log n)^{\frac{3(2s-1)}{5}}).$$

 \rightarrow Our estimator $\hat{f}_n^{d,s}$ can avoid the usual curse of dimensionality to some extent.

References

[Gal 2010] Gal, S. G. (2010) Shape-preserving approximation by real and complex polynomials. Springer. [Lemieux 2006] Lemieux, T. (2006) The "Mincer equation" thirty years after schooling, experience, and earnings. In Jacob Mincer a pioneer of modern labor economics (pp. 127-145). Springer. [Guntuboyina 2015] Guntuboyina, A. & Sen, B. (2015) Global risk bounds and adaptation in univariate convex regression. Probability Theory and Related Fields, 163(1), 379-411.